
2021 Rolf Oppliger Slide 1

TLS 1.3
Evolutionary History and

Innovations

2021 Rolf Oppliger Slide 2

• eSECURITY Technologies Rolf Oppliger

(founder and owner)

• Swiss National Cyber Security Centre NCSC

(scientific employee)

• University of Zurich (adjunct professor)

• Artech House (author and series editor for

information security and privacy)

whoami

→ rolf-oppliger.ch or rolf-oppliger.com

2021 Rolf Oppliger Slide 3

→ https://www.esecurity.ch/Books/ssltls2e.html

© Artech House (2016)

ISBN 978-1-60807-998-8

Reference Book

Web site comprises TLS 1.2 and TLS 1.3 (in «middlebox

compatibility mode») transcripts captured with Wireshark

Statistics about the use and deplyoment of the SSL/TLS

protocols are available from several sources on the Inter-

net (e.g., Qualys’ SSL Labs, EFF SSL Observatory, ICSI

Cerificate Notary, …)

2021 Rolf Oppliger Slide 4

Complementary Reading

© 2000 © 2000 © 2014

(revised in 2017)

2021 Rolf Oppliger Slide 5

1. Introduction

2. Evolutionary History (SSL 3.0 … TLS 1.2)

3. Innovations (TLS 1.3)

4. Concluding Remarks

Outline

2021 Rolf Oppliger Slide 6

• There are many possibilities to use cryptographic

techniques to implement security services

• Consequently, there are many cryptographic security protocols that work

on different layers of the TCP/IP protocol stack (TCP/IP model)

20162014201220102008200620042002200019981996199419921990 2018

S-HTTP

TLS 1.0

TLS 1.1

DTLS 1.0

TLS 1.2

DTLS 1.2

TLS 1.3
SSL 1.0/2.0

PCT/STLP

SSL 3.0

S
-H

T
T

P
 =

 S
e

c
u

re
 H

T
T

P
 (

e
x
p

e
ri

m
e

n
ta

l
R

F
C

 2
6

6
0

)

P
C

T
=

 P
ri

v
a

te
 C

o
m

m
u

n
ic

a
ti
o

n
 T

e
c
h

n
o

lo
g
y

S
T

L
P

=
 S

e
c
u

re
 T

ra
n

s
p

o
rt

 L
a

y
e

r
P

ro
to

c
o

l

1. Introduction

2021 Rolf Oppliger Slide 7

• The SSL/TLS (and DTLS) protocols are very widely deployed

• Main reasons

• They can be used to secure any application-layer protocol

• Their use is mostly transparent to the users

• The protocols have been designed to provide basic security services in

the Dolev-Yao model (passive attacks)

• This model has limitations and shortcomings

• Most importantly, it does not take into account active attacks (e.g., mal-

ware and attacks against the user interface)

• Today, many attacks are active or have at least an active component

(→ some attacks may work in spite of the SSL/TLS protocols)

2021 Rolf Oppliger Slide 8

• An absolute notion of security can only be achieved in theory (i.e., in

a clean and well-defined model)

• In practice, almost all implementations deviate from such a model

• Consequently, they have vulnerabilities and weaknesses that may be

exploited (e.g., side-channel attacks)

• In such a situation, it is common to play cops and robbers

• Secure money transport

• Burglar-proof safe

• Escape-proof prison

• ...

• This also applies to the SSL/TLS protocols

2021 Rolf Oppliger Slide 9

• A medieval castle may serve as an

analogy

• Sometimes it needs to be

patched

• Sometimes it needs to be protected

with additional defenses (counter-

measures)

• Both approaches are important

(short-term vs. long-term)

• But they may also be subject to

counterattacks

• This keeps the «cops and robbers»

game up and running

2021 Rolf Oppliger Slide 10

• The SSL protocol was developed in the 1990s

(→ historic RFC 6101)

• It provides the following security services

• Peer entity authentication service

• Data authentication service

• Connection confidentiality service

• Connection integrity service (without recovery)

2. Evolutionary History

(SSL 3.0 … TLS 1.2)

2021 Rolf Oppliger Slide 11

• It uses the following security mechanisms

• Encipherment

• Digital signature mecha-

nisms

• Data integrity mechanisms

• Authentication exchange

mechanisms

2021 Rolf Oppliger Slide 12

SSL Record Protocol

• Each SSL record consists of

• Type (1 byte)

• Version (2 bytes)

• Length (2 bytes)

• Fragment (variable length)

• The SSL record protocol

follows the Authenticate-

then-Encrypt (AtE) approach

20 = Change Cipher Spec

21 = Alert

22 = Handshake

23 = Application Data

0x0300 = 3,0

< 214 = 16,384

2021 Rolf Oppliger Slide 13

SSL_<key exchange>_WITH_<cipher + mode>_<hash>

2021 Rolf Oppliger Slide 14

SSL Handshake Protocol

Client Server

ClientHello

ServerHello

Flight #1

ServerHello

Finished

ChangeCipherSpec

Flight #3

Finished

ChangeCipherSpec

Flight #2

Application Data

Client Server

ClientHello

ServerHello

Certificate

ServerKeyExchange

CertificateRequest

ServerHelloDone

Certificate

Flight #1

Flight #4

ServerHello

Certificate

ServerKeyExchange

CertificateRequest

Certificate

ServerHello

Certificate

ServerKeyExchange

Finished

Certificate

ClientKeyExchange

Certificate

CerificateVerify

Certificate

ChangeCipherSpec

Flight #3

Finished

ChangeCipherSpec

Flight #2

Application Data

2021 Rolf Oppliger Slide 15

• Multiple handshake messages (type 22) can be sent in a single SSL record

(messages from other sub-

protocols cannot be packed

into the same record)

2021 Rolf Oppliger Slide 16

2021 Rolf Oppliger Slide 17

2021 Rolf Oppliger Slide 18

CT =

certificate type

2021 Rolf Oppliger Slide 19

2021 Rolf Oppliger Slide 20

• RSA → Sign(MD5(H)║SHA-1(H))

• DSA → Sign(SHA-1(H))

H

k = master secret

Client → 0x434C4E54

Server → 0x53525652

2021 Rolf Oppliger Slide 21

SSL Change Cipher Spec Protocol

• The SSL Change Cipher Spec Protocol consists of a single message

(that is packed in a distinct record)

• The message triggers the SSL state machine

• The protocol is removed in TLS 1.3

2021 Rolf Oppliger Slide 22

SSL Alert Protocol

• SSL

1 → warning

2 → fatal

No decryption_failed alert message in the SSL protocol

2021 Rolf Oppliger Slide 23

SSL Application Protocol

2021 Rolf Oppliger Slide 24

• TLS 1.0 (1999) is similar to SSL 3.0

• Major changes

• Fewer cipher suites (i.e., no FORTEZZA key exchange)

• New security parameters and state elements for TLS connections

• New TLS PRF to generate the keying material

• HMAC construction that is now officially

in line with RFC 2104

• New alert messages (e.g., decryption_

failed in addition to bad_record_mac)

• Simplified CertificateVerify and Finished messages

• …

2021 Rolf Oppliger Slide 25

• TLS 1.1 (2006) is very similar to TLS 1.0

• Two major changes were motivated by cryptographic vulnerabilities that

had been exploited by attacks against block ciphers operated in CBC

mode

• Serge Vaudeney’s padding oracle attacks (2002/2003) → invalidate the
decryption_failed alert message and always compute a MAC (even if

the padding check fails) to destroy the timing channel [→ Lucky 13 attack]

• Gregory Bard’s publication on how to mount a blockwise CPA if the CBC IV is

predictable (2004) [reused in the 2011 Browser Exploit Against SSL/TLS

(BEAST) attack] → add an explcit IV to a TLS record

• TLS 1.1 also introduced a new way of specifying parameters and parameter

values in IANA repositories (→ http://www.iana.org/assignments/tls-parameters)

• All other differences are subtle and not important

2021 Rolf Oppliger Slide 26

• TLS 1.2 (2008) is very similar to TLS 1.1

• The biggest change is the extension mechanism that allows additional

functionality to be incorporated into TLS without having to change the

underlying protocol (RFC 6066)

• The extensions are negotiated as part of the ClientHello and ServerHello

messages (i.e., appended at the end of the messages)

• Each extension comprises a type field (2 bytes), a length field (2 bytes) and

a variable length data field

• If a client wants to signal support for secure renegotiation, it appends 0xFF,

0x01, 0x00, 0x01, and 0x00 to the end of its ClientHello message

• 0xFF01 refers to the type of the extension (= 65,281)

• 0x0001 refers to the length of the data field (= 1)

• 0x00 refers to the data field («empty»)

2021 Rolf Oppliger Slide 27

2021 Rolf Oppliger Slide 28

• Additional changes

• Cipher suites that employ DES and IDEA are removed

• Only 3DES and AES (block ciphers) or RC4 (stream cipher) prevail

• Cipher suite TLS_RSA_WITH_AES_128_CBC_SHA is mandatory

• Support for SHA-256, PSK, and ECC

• Authenticated encryption with additional data (AEAD) → RFC 5116

• Counter with CBC-MAC mode (CCM)

• Galois/counter mode (GCM)

• …

• Compression algorithms NULL and DEFLATE (RFC 3749)

• Exported keying material (EKM) according to RFC 5705 to mitigate MITM

attacks

2021 Rolf Oppliger Slide 29

1996

2000

2004

2008

2012

2016

2020

Bleichen-

bacher

attacks

Vaudenay

attacks

Bard attack

Renegotiation

attacks

CBC-related attacks

Compression-

based attacks

Key exchange

downgrade

attacks

Other crypt-

analytical

attacks

TLS 1.3

TLS 1.2

TLS 1.1 - DTLS 1.0

TLS 1.0

SSL 3.0

DROWN

Randomly select

a premaster

secret to be used

in case of a

padding error

Lucky 13

Publication by

John Kelsey

BEAST

No support

for TLS-level

compression

Triple-

Handshake

Padding oracle attacks

No support

for SSL 2.0

Change

record format

(explicit IV)

«1/n-1» record

splitting

No support

for SSL 3.0

POODLE

Mitigate attack

exposure (error

messages and

timing

differences)

«Secure

renegotiation»

extension

renegotia-

tion_info)

PKCS #1 v2

Manger

Klima-

Pordorny-

Rosa

Disable client-

initiated

renegotiation

«Secure

renegotiation»

extension

extended_

master_secret

CRIME
TIME/BREACH

FREAK

Logjam
HEIST

No support for

export-grade

key exchange

PRG
(Netscape

Navigator)

DTLS 1.2

AEAD ciphers

No block

cipher in CBC

mode

Application-

level

compression?

Early attacks

against export-

grade

cryptography

RC4
No support for

RC4

Sweet32
Only strong

cryptographic

algorithms

Attacks against

keys that reside

in memory

SLOTH

SHA-1

3DES

2021 Rolf Oppliger Slide 30

• Since the official release of TLS 1.2, the IETF TLS WG had been

working on the next version of the TLS protocol

• The work was strongly influenced by the OPTLS protocol proposed by

Hugo Krawczyk and Hoeteck Wee in 2015

• In August 2018, TLS 1.3 was specified in

RFC 8446 (version 0x0304)

• The protocol comes along with improve-

ments in terms of efficiency and security

3. Innovations (TLS 1.3)

2021 Rolf Oppliger Slide 31

• With regard to efficiency, the ultimate goal was to reduce the number of

roundtrip times (RTTs) required to establish a session (because network

latency is an increasingly important problem)

• To achieve 1-RTT, the designers of TLS 1.3 adapted ideas from False Start

and Snap Start (originally developed by Google)

• The client tries to opportunistically guess the key exchange method pre-

ferred by the server and provides its respective key share in the first flight

(i.e., as part of the ClientHello message)

• If the client and server share a PSK, then the ClientHello message may

comprise encrypted data («early data»), and hence provide 0-RTT

• In this case, no certificate handling is required (because it is assumed that

the entities have already authenticated themselves)

2021 Rolf Oppliger Slide 32

• 0-RTT has several security subtleties (and its use should therefore be

considered with care)

• It is susceptible to replay attacks

→ anti-replay mechanisms and applications must be idempotent (i.e.,

messages sent multiple times must not change the server state)

• It is susceptible to DoS attacks

→ amount of «early data» must be limited to a reasonable size

• The «early data» is not forward secure

→ application must be aware of this fact and take it into account

• This requires a lot of care taken by the application software developers

• The usefulness of 0-RTT is controversially discussed in the community

2021 Rolf Oppliger Slide 33

• With regard to security, TLS 1.3 is made as simple as possible (to make

it less susceptible to implementation and configuration flaws)

• Also, it only uses cryptographic primitives and options that are known (or

commonly believed) to be secure

• No compression (other than NULL)

• No session resumption or renegotiation (PSK-based key exchange instead of

session IDs and session tickets)

• Key exchange is always based on PSK, (EC)DHE, or a combination thereof

(→ no static RSA or DH → controversial topic within the IETF and ETSI

→ Middlebox Security or Enterprise Transport Security (ETS) protocol)

• Authentication is based on PSK, RSA (RSASSA-PSS), ECDSA, or EdDSA

(e.g., Curve25519, Ed448-Goldilocks, …)

• The TLS PRF is replaced with a HMAC-based Key Derivation Function

(HKDF) that is in line with RFC 5869 (using SHA256 or SHA384)

2021 Rolf Oppliger Slide 34

• TLS 1.3 cipher suites only comprise an AEAD cipher (+ key length)

and a hash function for the HKDF

• TLS_AES_128_GCM_SHA256 (0x13,0x01) → RFC 5116

• TLS_AES_256_GCM_SHA384 (0x13,0x02)

• TLS_CHACHA20_POLY1305_SHA256 (0x13,0x03) → RFC 7539

• TLS_AES_128_CCM_SHA256 (0x13,0x04)

• TLS_AES_256_CCM_8_SHA256 (0x13,0x05) → RFC 6655

• The TLS 1.3 cipher suites are itemized in the same TLS parameters

repository maintained by the IANA (first byte is 0x13)

Protocol AEAD Cipher HKDF Hash Algorithm

MUST implement

SHOULD implement

2021 Rolf Oppliger Slide 35

• In TLS 1.3, all handshake messages after the ServerHello are encrypted

• This improves the confidentiality of the handshake

• It means, for example, that certificates are no longer sent in the clear

• This also makes it more important to send the SNI in encrypted form [

→ Encrypted SNI (ESNI) / Encrypted ClientHello (ECH)]

• Since July 2020, the Great Firewall (GFW) of China has been blocking

TLS 1.3 connections using ESNI

• More generally, all extensions that carry sensitive information should no

longer be sent in hello messages (that are sent in the clear)

• Instead, they should be sent in a new EncryptedExtensions message

(that is encrypted by default)

2021 Rolf Oppliger Slide 36

• TLS 1.3 message flow

(simplified overview)

In addition to the usual extensions, this message may also

include

• pre_shared_key → PSKs known to the client

• psk_key_exchange_modes → PSK alone or with

(EC)DHE

• supported_groups → supported (EC)DHE groups

• key_share→ (EC)DHE key shares for some or all of the

supported groups

• signature_algorithms→ RSA, ECDSA, and/or EdDSA

If a PSK is used, then some «early data» can be encrypted

and included in the ClientHello message (0-RTT)

Client Server

ClientHello

ServerHello

Certificate

CertificateRequest

Finished

Certificate

Flight #1

ServerHello

Certificate

CertificateRequest

Certificate

Certificate

ServerKeyExchange

CertificateCertificate

CerificateVerify

Certificate

Flight #3Finished

Flight #2

Application Data

ServerHelloEncryptedExtensions

ServerKeyExchangeCerificateVerify

ServerKeyExchangeApplication Data

Client Server

ClientHello

ServerHelloHelloRetryRequest

ClientHello

2021 Rolf Oppliger Slide 37

Available in TLS 1.3

→ «supported_groups»

2021 Rolf Oppliger Slide 38

• Some new extensions in TLS 1.3 (→ IANA)

• supported_groups (10) → RFC 4492, RFC 7919 → groups for (EC)DHE

• padding (21) → RFC 7685 → to overcome bugs related to the message length

• token_binding (24) → RFC 8472 → token binding according to RFC 8471

• compress_certificate (27) → RFC 8879

• record_size_limit (28) → RFC 8449 → improves max_fragment_length

• pwd_protect (29), pwd_clear (30), and password_salt (31)

→ informational RFC 8492 specifying secure password suites for TLS

• ticket_pinning (32) → experimental RFC 8672

• tls_cert_with_extern_psk (33) → experimental RFC 8773

• delegated_credentials (34) → Internet-Draft (front-end server can digitally

sign on behalf of back-end server in a CDN)

• supported_ekt_ciphers (39) → RFC 8870 → complements use_srtp

2021 Rolf Oppliger Slide 39

• pre_shared_key (41)

• early_data (42)

• supported_versions (43)

• cookie (44) → anti-clogging mechanism from IPsec and DTLS

• psk_key_exchange_modes (45) → PSK with/without (EC)DHE

• certificate_authorities (47) → replaces trusted_ca_keys extension

• oid_filters (48) → certificate extension OIDs (e.g., 2.5.29.15 for Key Usage)

• post_handshake_auth (49) → client signals support for post-handshake auth.

• signature_algorithms_cert (50) → complements the

signature_algorithms extension for certificates

• key_share (51) → (EC)DHE parameter

• transparency_info (52) → Internet-Draft

• …

2021 Rolf Oppliger Slide 40

• TLS 1.3 version negotaion is different than in previous versions

• The ClientHello and ServerHello messages have a legacy_version field

that is constantly set to 0x0303 (TLS 1.2)

• In addition, there is a supported_versions extension (43) that comprises

the value 0x0304 (TLS 1.3)

• Also, in previous versions of the SSL/TLS protocols, the TLS_FALL-

BACK_ SCSV was used to protect against some protocol downgrade

attacks (mainly to mitigate the POODLE attack)

• TLS 1.3 provides another (simple) anti-downgrade mechanism

• Client must check that neither

of the two values occurs in the

random value of the server

(otherwise something fishy

is going on)

2021 Rolf Oppliger Slide 41

• The version negotiation and extensibility

mechanisms of TLS have often led to

protocol failures in the past

• In January 2020, a countermechanism called

Generate Random Extensions And Sustain

Extensibility (GREASE) was proposed in

informational RFC 8701

2021 Rolf Oppliger Slide 42

4. Concluding Remarks

• SSL/TLS started as a relatively simple cryptographic security protocol

• With its modifications and extensions up to version 1.2, it has become an

highly involved protocol with many features

• It supports all cryptographic technologies and techniques that are state-of-

the art (e.g., AES, AEAD, ECC, HMAC, SHA-2, …)

• Whenever a new cryptographic primitive pops up, somebody writes an

Internet-Draft or RFC that specifies its use in a TLS setting (e.g., PQC,

quantum cryptography, …)

• The RFCs are experimential, informational, or submitted to the Internet

standards track

2021 Rolf Oppliger Slide 43

• In addition to the ones addressed so far, there are many other vulnera-

bilities and respective attacks reported in the media

• Heartbleed

• Apple’s «goto fail»

• Superfish

• …

• Not all of attacks can be mitigated with cryptographic techniques

• Nevertheless, TLS 1.3 is a milestone in the evolution of a cryptographic

security protocol for the transport layer

• The are only a few alternatives (e.g., Noise protocol framework)

• The (security) story will continue …

2021 Rolf Oppliger Slide 44

• Sources of recommendations and best practices

• TLS Recommendations of the IETF (RFC 7525, BCP 195)

• Security/Server Side TLS recommended configurations of the Mozilla

Project

• BSI TR-02102-2 «Cryptographic Mechanisms: Recommendations and Key

Lengths: Use of Transport Layer Security (TLS)" Version: 2021-1»

• SSL/TLS Deployment Best Practices of Qualys’ SSL Lab

• Transport Layer Protection Cheat Sheet of the Open Web Application

Security Project (OWASP)

• Revised guide about the use of TLS of the U.S. NIST

• Security controls guidelines for SSL/TLS management of the SANS Institute

• …

2021 Rolf Oppliger Slide 45

• Key recommendations from RFC 7525

• Don’t support SSL (v2 or v3) anymore

• Support TLS 1.0 or 1.1 only if needed

• Support TLS 1.2 (TLS 1.3 if possible)

• Disable SSL/TLS compression, unless the application takes care of the res-

pective vulnerabilities

• Don’t truncate HMAC values

• Always provide forward secrecy (→ no static RSA or Diffie-Hellman key

exchange)

• Enforce the use of the following cipher suites

• TLS_DHE_RSA_WITH_AES_128_GCM_SHA256

• TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

• TLS_DHE_RSA_WITH_AES_256_GCM_SHA384

• TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

2021 Rolf Oppliger Slide 46

2021 Rolf Oppliger Slide 47

