RFID SCA

Adel Qasem

RFID SCA

Analysis of Side-Channel Attacks on RFID/NFC Devices

Adel Qasem Dr. Hervé Pelletier (Nagra) & Prof. Serge Vaudenay (LASEC)

Master Thesis - ISSS Berner Tagung

January 2023

Goal

RFID SCA

Adel Qasem

RFID SCA

Attacks

Goal

Analyze the feasibility of ${\bf remote}$ electromagnetic side-channel attacks against RFID/NFC tags.

RF		C	C A	
ΠГ	שו	2	CA	

Adel Qasem

RFID SCAs

Attacks

RFID Side-Channel Attacks

RFID

RFID SCA

Adel Qasem

RFID SCAs

Attacks

Radio Frequency IDentification

Wireless communication technology that uses a powered reader that provides energy, information, and a communication channel to a passive (i.e., powerless) tag using an EM field.

RFID Side-Channel Attack

RFID SCA

Adel Qasem

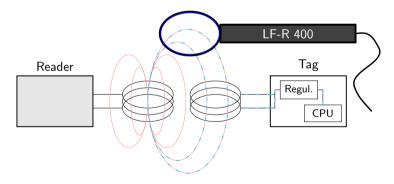
RFID SCAs

Attacks

We could use a microscopic electromagnetic probe, but we want a remote attack.

RFID Side-Channel Attack

RFID SCA


Adel Qasem

RFID SCAs

Attacks

We could use a microscopic electromagnetic probe, but we want a remote attack.

To do so, we measure the field of the EM coupling:

RFID SCA
Adel Qasem
FID SCAs
ttacks

Input and Output Correlation

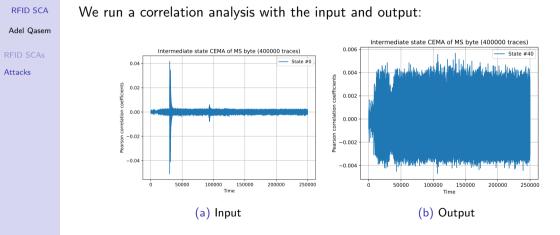


Figure: Input and Output CEMA (20M traces).

Intermediate State Correlation

Attacks

Similarly with an appropriate intermediate state:

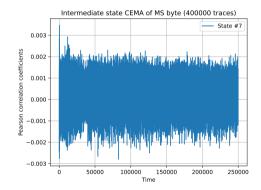


Figure: Intermediate state CEMA (20M traces)

Lack of Correlation

Lack of Correlation

RFID SCA

Adel Qasem

RFID SCAs

Attacks

Why? Could be a countermeasure such as desynchronization.

Lack of Correlation

Adel Qasem

RFID SCA

Attacks

Why? Could be a countermeasure such as desynchronization.

 \rightarrow Best way to find out: study the bare electromagnetic signal using analog demodulation.

Adel Qasem

RFID SCA

Attacks

RFID SCA

Adel Qasem

RFID SCA

Attacks

- Software Defined Radio
 - \rightarrow Complex demodulation is hard to implement

RFID SCA

Adel Qasem

RFID SCA

Attacks

- Software Defined Radio
 - \rightarrow Complex demodulation is hard to implement
- Analog circuitry
 - \rightarrow Careful implementation and optimization is required

RFID SCA

Adel Qasem

RFID SCA

Attacks

- Software Defined Radio
 - \rightarrow Complex demodulation is hard to implement
- Analog circuitry
 - \rightarrow Careful implementation and optimization is required
- RFID Reader
 - \rightarrow Only ASK (de)modulation is done by the frontend

Vertical Peak Focus

RFIE) SCA
Adel	Qasem

RFID SCAs

Attacks

Zoom to focus on the variations of the carrier signal caused by modulation.

Vertical Peak Focus

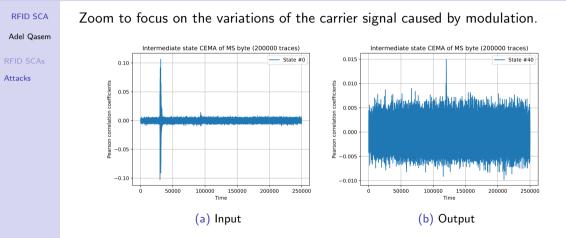


Figure: Input and output CEMA (12.5M traces).

Vertical Peak Focus

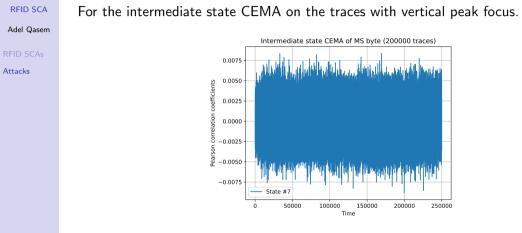


Figure: Intermediate State CEMA (12.5M traces).

Machine-Learning Side-Channel Attack

RFID SCA

Adel Qasem

RFID SCA

Attacks

Machine learning is commonly used for side-channel attacks as it show good result. The goal is to build a classifier to recover the subkeys.

Fix vs Random Classifier

RFID SCA

Adel Qasem

RFID SCA

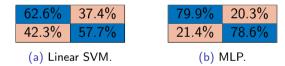
Attacks

We used multiple classifiers to determine if a trace is fixed or random. We get very good result:

74.9%25.27.5%72.		73.6% 30.6%	69.4%	87.7% 12.3%		
(a) Logistic regression.		(b) Linear SVM.		(c) MLP.		

This reinforces the idea that we might have key-related leakage.

Fix vs Fix Classifier


RFID SCA

Adel Qasem

RFID SCA

Attacks

Similarly, we built a fix vs fix classifier. We again get very good result:

We do have full-key leakage!

Sub-Key Classifier

RFID SCA

Adel Qasem

RFID SCAs

Attacks

We need to be able to classify traces according to a subkey (e.g., 2^8 classes). \rightarrow The byte key classifiers did not however show good results...

Sub-Key Classifier

RFID SCA

Adel Qasem

RFID SCAs

Attacks

We need to be able to classify traces according to a subkey (e.g., 2^8 classes). \rightarrow The byte key classifiers did not however show good results...

Possibly a key-dependent mask preventing byte-level analysis. \rightarrow Key-dependent leakage, but no sub-key dependent leakage

Future Works

RFID SCA

Adel Qasem

RFID SCAs

Attacks

- Higher-order side-channel attack
 - \rightarrow Requires insight and much smaller time frames

Future Works

RFID SCA

Adel Qasem

RFID SCAs

Attacks

- Higher-order side-channel attack
 - \rightarrow Requires insight and much smaller time frames
- Microscopic probe insight
 - \rightarrow An attacker could use it to do the whole attack

RFI	D S	SCA
Adel	Qa	isem

KI ID SC/

Attacks

Thank you!